I am a differential geometer working on geometric applications of integrable systems. I am particularly interested in applications to harmonic maps and conformal surface theory. A common feature of my work is an interplay between ideas arising in differential geometry and in complex algebraic geometry.

- E. Carberry and K. Turner,
**Harmonic tori in de Sitter spaces S_1^2n.**

To appear in "Geometriae Dedicata", accepted January 2013. 15pp. (pdf)

- E. Carberry,
**Harmonic maps and integrable systems.**

To appear in "Contemporary Mathematics, Amer. Math. Soc.", accepted November 2012. 28pp. (pdf)

- E. Carberry, K. Leschke and F. Pedit,
**Darboux transformations and spectral curves of constant mean curvature tori revisited.**

To appear in "Annals of Global Analysis and Geometry", accepted August 2012. 36pp. (pdf)

- E. Carberry,
**Associative T^2-cones in ImO and spectral curves.**

Proc. 16th OCU Int. Academic Symp. 2008, OCAMI Studies Vol 3 (2009) 251-265. (pdf)

- E. Carberry,
**Minimal tori in S^3.**

Pacific J. Math Vol. 233, No. 1 (2007), 41-70. (pdf)

- E. Carberry and I. McIntosh,
**Minimal Lagrangian 2-tori in CP^2 come in real families of every dimension.**

J. London Math. Soc. Vol. 69 No. 2 (2004), 531-544. (pdf)

- E. Carberry and K. Turner,
**Toda frames, harmonic maps and extended Dynkin diagrams.**

arXiv:1111.4028, 24pp. (pdf)

- E. Carberry and M. Schmidt,
**The closure of spectral data for constant mean curvature tori in S^3.**

arXiv:1204.4517, 13pp. (pdf)

- E. Carberry and E. Wang,
**Spectral curves for almost complex tori in S^6.**

Preprint. (pdf)

- E. Carberry, K. Leschke and F. Pedit,
**Spectral curves for constant mean curvature tori in R^3.**

Oberwolfach Reports, Vol 7, Issue 2 (2012). (pdf)

Main Page | Contact | Research | Teaching |